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Abstract
It is shown that a contribution to the total scattering of neutrons by a single
crystal of KHCO3 held at 15 K arises from a purely quantum-mechanical and
diffuse addition to scattering from identical particles which, in this instance,
are protons in small dimers in a configuration described by a monoclinic crystal
structure. The addition to scattering engages the total single-atom cross-section,
and this feature explains why it is not visible in deuterated crystals where
the relevant cross-section is down by an order of magnitude. Moreover, two
other features of KHCO3 make it a favourable case in which to observe the
quantum-mechanical addition to scattering. First, the addition increases with
decreasing nuclear spin I and I = 1/2 for protons. Secondly, there are two
dimer orientations in KHCO3 and their contributions to scattering overlap in
reciprocal space and produce high intensity in the form of rods. Our successful
model of the observed scattering represents the protons as an ensemble of
independent dimers with the appropriate crystal arrangement. Scattering from
a dimer is calculated including quantum-mechanical correlations of the nuclei
(protons) that in a homonuclear diatomic molecule produce ortho- and para-
states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Protons in potassium bicarbonate have particularly interesting properties because they are
found in small dimers that are well separated [1]. Properties in question include correlations
between protons induced by the quantum-mechanical treatment of indistinguishable
nuclei [2, 3]. In the case of a hydrogen molecule the ortho- and para-states are a manifestation
of quantum correlations. We present a case for quantum correlations of this type creating a
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diffuse contribution to the total scattering of neutrons by a single crystal of KHCO3 held at
15 K [4]. The diffuse contribution is absent in the spectrum of neutrons scattered by a deuterated
sample [4]. Our model successfully accounts for this finding, and applied to KHCO3 (also
known as algicidal soap) our model accounts for the high visibility of the diffuse contribution
and its spatial distribution.

The essential components of our model are described in the next three sections. First, the
established crystal structure is represented by the monoclinic space group P21/a. Secondly,
the treatment by quantum mechanics of neutron scattering by two indistinguishable nuclei is
described in sections 3 and 4. The total cross-section contains a diffuse contribution that is
purely quantum mechanical in origin. Section 5 describes a plausible calculation of the diffuse
contribution by means of simple one-particle orbitals for a dimer. Thereafter, in section 6,
our complete model is shown to account for all prominent features of the observed neutron
spectrum. A discussion of our findings is provided in section 7.

2. Crystal structure

The crystal structure of KHCO3 at 14 K has been determined previously using single-crystal
neutron diffraction [4]. Here we describe its pertinent features with reference to the two
orthogonal projections in figure 1. There are four formula units per monoclinic unit cell
in space group P21/a, with a = 15.06(2) Å, b = 5.570(15) Å, c = 3.650(8) Å, and
β = 103.97(15)◦. Pairs of CO3 groups are joined by two nearly parallel O–H · · · O bonds
to form approximately planar centrosymmetric (HCO3)2 dimers parallel to the 301̄ planes
and with their long O–C · · · C–O axis approximately along the 103 direction. All protons
are crystallographically equivalent and no hydrogen bond disorder was observed at 14 K. In
addition, their thermal motion is decoupled from that of the CO3 units in the dimer. The crystal
structure therefore contains two short intra-dimer H–H contacts, with the protons separated
by |d| = 2.22 Å, and lying principally along b, but inclined in opposite senses within dimers
of type I or II. The vectors joining the two protons within the dimer (given by the dot–dashed
lines in figure 1(a)) are d1 = (−0.030, 0.389,−0.094) and d2 = (0.030, 0.389, 0.094) for
dimers I and II, respectively (in lattice units). d1 and d2 therefore define the two shortest proton
dimers within the crystal structure and are the dimers referred to in subsequent sections. The
projections of d1 and d2 onto the a–c lattice plane are also approximately along 1̄03̄ and 103
real-space directions, respectively.

3. Nuclear correlations

Let us consider scattering by two non-equivalent and identical nuclei. The nuclei, labelled α
and β, are separated by a distance d, and they are at positions Rα and Rβ . Impinging neutrons
are scattered by the potential [5]

V (α, β) = bα exp(ik · Rα) + bβ exp(ik · Rβ), (3.1)

where b is the scattering length operator and k is the change in wavevector of the neutrons.
The scattering length operator is expressed in terms of the spin of a neutron, s, and the

spin of a nucleus, I . One has

bα = A + Bs · Iα, (3.2)

and a similar expression for bβ in terms of Iβ . The nuclear spin operators satisfy Iα · Iα =
Iβ · Iβ = I (I + 1) where I is the spin magnitude (I = 1/2 (1) for a proton (deuteron)). A and
B in (3.2) are related to the coherent, σc, and total, σ , cross-sections;

σc = 4π A2, σ = 4π{A2 + 1
4 B2 I (I + 1)}. (3.3)
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Figure 1. Projections of the structure of KHCO3 at 14 K using the parameters determined in [4]
and including anisotropic temperature factors. The figures show pairs of connected HCO3 groups
and separated K atoms. (a) The projection onto the plane, normal to c, showing the two symmetry-
related (HCO3)2 dimers, I and II, together with the shortest and next shortest proton dimers,
indicated by the dot–dashed and dotted lines, respectively. Note that these (HCO3)2 dimers are
actually inclined with respect to the a–b plane, as shown in (b). (b) The projection onto the
plane normal to b (orthogonal to the plane in (a), above, and rotated by 14◦ about b), showing the
orientation of the planar (HCO3)2 dimers. The reciprocal-lattice vectors are shown as dashed lines
and are not to scale with respect to the real-space unit-cell vectors.
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In order to understand the origin of the quantum effect in scattering by identical particles,
which we hold responsible for the observed intensity, let us begin by examining the diffuse
scattering from a dimer in the forward direction k = 0. The intensity in question is

T = 〈|V (α, β)|2〉 − |〈V (α, β)〉|2, (3.4)

where angular brackets denote a mean value. Setting k = 0 in (3.1) leads to

〈V (α, β)〉 = 〈bα〉 + 〈bβ〉 = 2〈bα〉, (3.5)

where the second equality follows because the two nuclei are identical. If Iα is randomly
orientated, 〈Iα〉 = 0 and 〈bα〉 = A, from which it follows that

4π |〈V (α, β)〉|2 = 4σc. (3.6)

Turning to the other factor in T ,

〈|V (α, β)|2〉 = 〈b2
α〉 + 〈b2

β〉 + 2〈bαbβ〉 = 2(σ/4π) + 2〈bαbβ〉. (3.7)

Here we have used the fact that the nuclei are non-equivalent, and bα and bβ commute.
Additionally, b2

α = A2 + 2ABs · Iα + B2{s · Iα}2, taken together with the identity

{s · Iα}2 = 1
4 {I (I + 1) + 2is · Iα × Iα}, (3.8)

leads to 〈b2
α〉 = σ/4π .

3.1. Distinguishable nuclei

For distinguishable nuclei, 〈bαbβ〉 = 〈bα〉〈bβ〉 = A2. Hence, in this instance, 4πT =
2σ + 2σc − 4σc = 2σi where σi = σ − σc = B2 I (I + 1)/4 is the incoherent cross-section. We
then arrive at the expected result that the diffuse intensity is equal to the incoherent cross-section
multiplied by the number of nuclei.

3.2. Indistinguishable nuclei

To obtain 〈bαbβ〉 in the presence of quantum correlations, we use the obvious identity

2bαbβ = b2
α + b2

β − (bα − bβ)
2. (3.9)

The total spin J = Iα + Iβ yields J · J = J (J + 1) = 2I (I + 1) + 2Iα · Iβ . Using the
value of 2Iα · Iβ from this expression leads immediately to the result

〈(bα − bβ)
2〉 = B2 I (I + 1)

{
1 − J (J + 1)

4I (I + 1)

}
= B2 I (I + 1)R(J ), (3.10)

where the second equality defines R(J ). Assembling the pieces from (3.9) gives

〈bαbβ〉 = 〈b2
α〉 − 1

2 B2 I (I + 1)R(J ), (3.11)

or 4π〈bαbβ〉 = σ−2σi R(J ), and we conclude that for indistinguishable nuclei 〈bαbβ〉 depends
on the magnitude, J , of the total spin. A state with total spin J has a degeneracy equal to
(2J +1), and J = 0, 1, 2, . . . , 2I . It can be shown that an average over J reduces R(J ) to 1/2,
and the corresponding value of 〈bαbβ〉 is identical to its value A2 for distinguishable nuclei.
However, in general 〈bαbβ〉 depends on J , it is not equal to A2, and the result leads to specific
features in the diffuse intensity for scattering by correlated nuclei.

With k different from zero there is an additional dependence in T on J that comes in the
form of the phase factor (−1)J , as shown in the next section. In consequence, we will be faced
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with averaging the intensity over even and odd J . The weight, or spin degeneracy, factor in
the averaging w(J ) = (2J + 1)/(2I + 1)2 satisfies

2I∑
J=0

w(J ) = 1. (3.12)

Restricting J to odd integers yields [6] I = integer,∑
J (odd)

w(J ) = I/(2I + 1); (3.13)

I = half-integer,∑
J (odd)

w(J ) = (I + 1)/(2I + 1). (3.14)

Slightly more algebra is required to find average values of R(J ). For all I ,
2I∑

J=0

w(J )R(J ) = 1
2 , and

∑
J (odd)

w(J )R(J ) = 1
4 , (3.15)

and the first finding has been used in the preceding discussion.

4. Diffuse scattering from a dimer

In this section we calculate the diffuse scattering by a dimer including the quantum
correlations described in the previous section. The correlations stem from the identity
of the nuclei, and the requirement in quantum mechanics that their wavefunction �(α, β)
satisfies �(β, α) = (−1)2I�(α, β) [6]. The wavefunction is the product of a spinor
XJ

M (β, α) = (−1)2I+J XJ
M(α, β) and an orbital �(α, β). We adopt an independent-particle

ansatz in which

�(α, β) = 1√
2
{ϕ1(Rα)ϕ2(Rβ) + (−1)Jϕ1(Rβ)ϕ2(Rα)}, (4.1)

where ϕ1(R) and ϕ2(R) are one-particle orbital wavefunctions. Since J is an integer,
(−1)2J = 1, and�(α, β) = XJ

M(α, β)�(α, β) behaves in the correct way for an exchange of
the two nuclei. The one-particle orbitals will be taken to be purely real, normalized to unity,
and orthogonal.

The quantity of interest in the calculation of diffuse scattering is

〈|V (α, β)|2〉 = 1

(2J + 1)

∑
M

∫
dRα

∫
dRβ �

∗(α, β)|V (α, β)|2�(α, β)

= 2〈b2
α〉 + 2〈bαbβ〉{P(k) + (−1)J Q(k)}. (4.2)

Here the mean value of bαbβ is 〈bαbβ〉 = ∑
M{XJ

M(α, β)}+bαbβXJ
M(α, β)/(2J + 1) with a

similar definition of 〈b2
α〉. Values of 〈bαbβ〉 and 〈b2

α〉 are quoted in the previous section. The
quantities P(k) and Q(k) are defined through

2{P(k) + (−1)J Q(k)} =
∫

dRα

∫
dRβ �

2(α, β){Z∗(Rα)Z(Rβ) + Z(Rα)Z
∗(Rβ)},

(4.3)

where the dependence on J on the right-hand side is in �(α, β) defined in (4.1). For
convenience we write Z(R) = exp(ik · R). By inspection of �(α, β) it is evident that Q(k)
is determined by integrals of Z(R), ϕ1(R) and ϕ2(R), and with Z(R) = 1 at k = 0 it follows
from the orthogonality of ϕ1(R) and ϕ2(R) that Q(0) = 0. In contrast, P(k) is determined
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by diagonal matrix elements of Z(R) and it does not vanish at k = 0. Additional insight to
the physical significance of P(k) and Q(k) is available by looking at the expression (4.4) for
the total scattering.

The experiment of interest to us measures the total scattering of neutrons by KHCO3 [4].
For this situation, the intensity is proportional to 〈|V |2〉 and the mean value of |V |2 is taken to
include an average over the allowed values of the total angular momentum J . To this end, the
relevant results in section 3 are (3.11) and (3.15).

After averaging over all J , the value of 〈|V |2〉 in (4.2) reduces to

4π〈|V (α, β)|2〉 = 2

{
σ + σc P(k) +

σ

(2I + 1)
(−1)2I Q(k)

}
. (4.4)

The term in Q(k) survives the averaging because there are different fractions of states with
even and odd J . It is evident that the contribution to scattering from Q(k) is purely quantum
mechanical and it has no classical analogue. The contribution is particularly large for protons
because I = 1/2, and σi = σ − σc is very large. Using the values P(0) = 1 and Q(0) = 0
we recover at k = 0 the value of 〈|V (α, β)|2〉 found in section 3.

In applying our finding to the interpretation of scattering by KHCO3 we will use σ � σc

and I = 1/2 and base our discussion on the expression

T (k) ≈ 2σ {1 − Q(k)/2}. (4.5)

It remains to derive a plausible result for Q(k) for a proton dimer, and this task is the subject
of the next section.

5. One-particle orbitals

Having adopted in section 4 an independent-particle ansatz for the dimer orbital, �(α, β),
we have arrived at an expression for the diffuse contribution to total scattering, Q(k), which
contains matrix elements created with orthogonal one-particle orbitals. At a first level of
approximation, designed to capture the essential physics using a simple algebraic expression,
one-particle orbitals are represented in terms of a single radial wavefunction. In this instance,
we achieve Q(k) expressed in terms of only two parameters, later chosen to give Q(k) in good
agreement with the available experimental data.

Let the radial wavefunction be denoted by ψ(R) and elect to use one-particle orbitals,

ϕ1(R) = N1{ψ(R) + aψ(r − R)} and ϕ2(R) = N2{ψ(R)− bψ(r − R)}, (5.1)

where one anticipates on physical grounds that r is very close to the vector d that joins the
two nuclei in the model dimer. Normalization and orthogonality require

N2
1 (1 + a2 + 2aS) = 1, N2

2 (1 + b2 − 2bS) = 1, (5.2)

and 1 + S(a − b) = ab, where S is a mixing parameter,

S =
∫

dRψ(R)ψ(r − R). (5.3)

The corresponding value of Q(k) is essentially a function of the angle ξ = (r · k)/2. We find

Q(k) = (N1 N2)
2 cos(2ξ) exp(−2W0){(1 + ab)2 sin2 ξ + (1 − ab)2(1 − cos ξ)2}, (5.4)

where exp(−2W0) is a Debye–Waller factor due to zero-point motion of the nuclei. While (5.4)
is readily derived on taking an isotropic Gaussian function for ψ(R), further consideration
shows that its structure is largely independent of the precise form of ψ(R).
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On comparing our expression for Q(k) with data in the next section we conclude that
the diffuse contribution to scattering is well described by the second term in (5.4) that is
proportional to sin4(ξ/2). Setting ab = −1 leads to

Q(k) = 4S2

(1 − S2)2
cos(2ξ) exp(−2W0) sin4(ξ/2). (5.5)

We note that in the limit S = 0 the one-particle orbitals are ψ(R) and ψ(r − R), and
Q(k) = 0. (On the other hand, ab = 1 requires a = b = 1, and Q(k) does not vanish in the
limit S = 0. Setting ab = 1 in (5.4) produces in Q(k) a dependence on ξ which is found with
a Heitler–London ansatz for the orbital�(α, β).)

Useful insight to the nature of the dimer orbital related to (5.5) and the part played by S is
found by looking at the corresponding one-particle density ρ(R). The two maxima in ρ(R)
indicate the most probable positions of the nuclei, and separation of the peaks is a fair measure
of the dimer bond length d = |d|. For the case of ab = −1 we find

ρ(R) = ϕ2
1(R) + ϕ2

2(R) = {ψ2(R) + ψ2(r − R)− 2Sψ(R)ψ(r − R)}/(1 − S2). (5.6)

From this result for ρ(R) it is evident that S > 0 leads to a separation between nuclei d which
is larger than r . By way of illustration, an isotropic Gaussian function for ψ(R) and S = 1/2
leads to d = 1.24r , while d/r increases monotonically with S.

6. Confrontation of experimental data and theory

The scattering intensity, T (k), given by (4.5) and (5.5) for a single proton dimer is planar
perpendicular to the dimer direction and modulated parallel to the dimer direction. In addition,
the Debye–Waller factor causes the intensity to decrease as |k| increases. Along the dimer
direction and with increasing k, moderate intensity is observed at k = 0 which then peaks
before dropping to a minimum for ξ = (r · k)/2 = π . The modulation is then repeated in
reverse between ξ = π and 2π , albeit suppressed by the Debye–Waller factor. At first sight
this appears incompatible with the observed one-dimensional rods of diffuse scattering in the
a∗–c∗ reciprocal-lattice plane of KHCO3 [4] (figure 2). These rods lie along the 301̄ direction,
at a minimum |k| of 10.25 Å−1 where they intersect the 701 direction.

The reciprocal-lattice plane of calculated scattering, T (k), containing the 701 reciprocal
direction (which is parallel to the 103 real-space direction and perpendicular to 301̄) and b∗
is shown in figure 3. This plane is chosen because it contains the dimers, d1 and d2, and
is perpendicular to the observed diffuse scattering in the a∗–c∗ plane (see figure 2). In this
calculation, the contributions from each dimer (given by 5.5) have been summed and we have
not included a Debye–Waller factor. The vector r in the definition of ξ will be in the same
direction as d, the vector joining the protons. The dimer bond length |d| is larger than the
parameter |r| in the one-particle orbitals that are described in the previous section. We have
chosen values of r = 0.7d1 and 0.7d2 to provide best agreement with the observed data (see
below).

Two sets of identical planes of intensities are superimposed, one with planes normal to
an axis 13◦ from b∗ and one normal to an axis −13◦ from b∗. The effect of the superposition
of intensity from the two dimers is to give peaks of intensity in figure 3. These peaks are
actually rods of scattering perpendicular to the reciprocal-lattice plane plotted in figure 3 and
occur in parts of reciprocal space where the planes with maximum intensity from each dimer
contribution overlap. In particular, a rod of scattering is observed for k = ±10.25 Å−1

along 701 when k = 0 along b∗. This is in the same position and orientation to the ridge of
scattering observed in the experimental data (figure 2). This is seen more clearly in figure 4,
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Figure 2. The diffraction pattern from KHCO3 at 15 K in the a∗–c∗ plane (from [4]). Dark spots
correspond to Bragg peaks. Strong diffuse scattering is observed centred at k = 0 and in two ridges
(marked by arrows) along 301̄ directions, perpendicular to 701 and either side of the origin.
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Figure 3. Calculated diffuse scattering, T (k), in the (701)–(010) reciprocal-lattice plane from the
proton dimers d1 and d2 in KHCO3. Dot–dashed lines show the directions of the dimers and dashed
lines show the planes perpendicular to the dimers that overlap to produce the rods of intensity in
the a∗–c∗ plane. Contours are in arbitrary units.

where the calculation of T (k) has been made for the a∗–c∗ plane, and introducing an overall
isotropic Debye–Waller factor, exp(−2W ). This Debye–Waller factor reflects the variations
of different proton dimers through thermal fluctuations and is distinct from the Debye–Waller
factor exp(−2W0) in (5.5).

There is only really one significant shortcoming in the calculation, revealed by confronting
figures 2 and 4, and that is an apparent overestimate of the widths of the rods of intensity.
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Figure 4. Calculated diffuse scattering, T (k), in the a∗–c∗ reciprocal-lattice plane from the proton
dimers d1 and d2 in KHCO3. Contours are in arbitrary units.

An assessment of the physics behind this finding calls for a more sophisticated calculation of
the diffuse contribution to scattering Q(k) and additional experimental data for other directions
of k. We also have in mind anisotropy in the proton Debye–Waller factor [4], for example.

It has been interesting to find the influence of alternative dimers. Looking at the packing
of protons in the unit cell, the next nearest possible candidate dimers, d1–b and d2–b, are
given by the dotted lines in figure 1(a). Since these dimers only differ from d1 and d2 in their
components along b, these would add to the intensity of the rods of scattering in the a∗–c∗
plane.

7. Discussion

A recently discovered, spatially coherent addition to the total scattering of neutrons by a single
crystal of potassium bicarbonate [4] is here attributed to diffuse scattering from proton dimer
units. It is shown that the relatively high intensity of the addition and its spatial characteristics
stem simply from the actual configuration of dimers in the P21/a monoclinic crystal structure.
The diffuse scattering in question has no analogue in classical physics and it engages the
total single-atom neutron cross-section. These features of the proposed mechanism for the
additional scattering will explain why it is not visible in total scattering by a deuterated crystal
(KDCO3), for the spin (I = 1) and cross-section (σ = 7.6 b) of a deuteron are significantly
different from the corresponding quantities for a proton (I = 1/2 and σ = 81.7 b). Crucially,
the diffuse scattering by a dimer that we call on to explain the data on KHCO3 depends on the
change in wavevector of the neutrons scattered by the crystal. Disorder in proton positions in
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the crystal that is brought about by raising its temperature will destroy the delicate quantum
correlations in a dimer.

The main ingredients in the proposed explanation, the crystal structure and the treatment
by quantum mechanics of total scattering by a dimer, are indeed firmly based. To accomplish a
comparison with the experimental data we are called upon to model the orbital state of protons
in a dimer. We use for the orbital wavefunction a plausible independent-particle ansatz that
has the merit of simplicity, and our expression for the diffuse intensity contains only two
parameters. Most importantly, the orbital ansatz permits us to correctly identify the essential
spatial parameter that we demonstrate to be the projection of the scattering wavevector on
the axis of a dimer unit, of which there are two types in the crystal structure. Quantitative
agreement between the experimental data and calculated intensity is achieved with values of the
two parameters that are shown to be entirely reasonable. The data indicate that the calculated
intensity in reciprocal space is too broad. One looks to a future ab initio, parameter-free
calculation of diffuse scattering by a dimer with correlated nuclei for improvement on this
item in the confrontation of data and theory.

Our interpretation of the addition to total scattering by a potassium bicarbonate crystal is
different from the one already offered [4], where a special macroscopic state of two-dimensional
quantum-mechanical vibrations of the protons is invoked.
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